The centromeric/nucleolar chromatin protein ZFP-37 may function to specify neuronal nuclear domains.
نویسندگان
چکیده
Murine ZFP-37 is a member of the large family of C2H2 type zinc finger proteins. It is characterized by a truncated NH2-terminal Krüppel-associated box and is thought to play a role in transcriptional regulation. During development Zfp-37 mRNA is most abundant in the developing central nervous system, and in the adult mouse expression is restricted largely to testis and brain. Here we show that at the protein level ZFP-37 is detected readily in neurons of the adult central nervous system but hardly in testis. In brain ZFP-37 is associated with nucleoli and appears to contact heterochromatin. Mouse and human ZFP-37 have a basic histone H1-like linker domain, located between KRAB and zinc finger regions, which binds double-stranded DNA. Thus we suggest that ZFP-37 is a structural protein of the neuronal nucleus which plays a role in the maintenance of specialized chromatin domains.
منابع مشابه
Characterisation of transcriptionally active and inactive chromatin domains in neurons.
The tandemly organised ribosomal DNA (rDNA) repeats are transcribed by a dedicated RNA polymerase in a specialised nuclear compartment, the nucleolus. There appears to be an intimate link between the maintenance of nucleolar structure and the presence of heterochromatic chromatin domains. This is particularly evident in many large neurons, where a single nucleolus is present, which is separated...
متن کاملZinc Fingers Function Cooperatively with KRAB Domain for Nuclear Localization of KRAB-Containing Zinc Finger Proteins
Multiple nuclear localization domains have been identified in nuclear proteins, and they finely control nuclear import and functions of those proteins. ZNF268 is a typical KRAB-containing zinc finger protein (KRAB-ZFP), and previous studies have shown that the KRAB domain reinforces nuclear localization of KRAB-ZFPs by interacting with KAP1. In this study, we find that some of 24 zinc fingers o...
متن کاملCentromeres Are Specialized Replication Domains in Heterochromatin
The properties that define centromeres in complex eukaryotes are poorly understood because the underlying DNA is normally repetitive and indistinguishable from surrounding noncentromeric sequences. However, centromeric chromatin contains variant H3-like histones that may specify centromeric regions. Nucleosomes are normally assembled during DNA replication; therefore, we examined replication an...
متن کاملThree-dimensional organization of Drosophila melanogaster interphase nuclei. I. Tissue-specific aspects of polytene nuclear architecture
Interphase chromosome organization in four different Drosophila melanogaster tissues, covering three to four levels of polyteny, has been analyzed. The results are based primarily on three-dimensional reconstructions from unfixed tissues using a computer-based data collection and modeling system. A characteristic organization of chromosomes in each cell type is observed, independent of polyteny...
متن کاملAn MBoC Favorite: High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli
The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 273 15 شماره
صفحات -
تاریخ انتشار 1998